Air Rotation Technology

Benefits

- Proven concept
- Low Capital Cost
- Ideal for intensively tracked buildings
- Permits future racking change layouts without disturbance of the heating system
- In-built de-stratification
- Provides an even pattern of heating throughout the building
- High thermal efficiencies
- Choice of fuels

Introduction

Powrmatic Group have been market leaders in air rotation technology for many years and continue to be a major global supplier of such systems today. Many customers worldwide benefit from the application of these well proven systems which are now found in a wide variety of buildings including warehouses, logistics centres, sports halls, arenas and many industrial and commercial premises.

The principle of air rotation is to move large volumes of air at low velocity and controlled temperature. Cooler low level air is constantly drawn through the heater with a high level discharge effectively de-stratifying the building and, in turn, lowering the temperature gradient within the heated area. For the majority of applications a single heater can provide uniform warmth wall to wall and floor to ceiling without the need for costly ductwork. Flexibility is a key benefit of Powrmatic air rotation systems.

Alternative systems are often designed to suit the building and racking layouts. Such practice restricts future changes whereas with a Powrmatic air rotation system a racking layout can generally be changed without disturbance to the heating system.

Heaters can be located directly within the space to be heated or located in plant rooms.

External versions are also available. The use of a central plant heater and no requirement for extensive ductwork significantly reduces both installed and on-going service costs whilst a choice of fuels, modulating burner options and controls combine to ensure optimum fuel efficiencies.
TE Overview

Models Available

- TEG - Gas Fuel
- TEO - Oil Fuel

Application & Configuration
Powrmatic TE air rotation heaters are supplied in upright configuration. Whilst most TE heaters will be internally located it is possible to choose an external location for the heater and for such applications Powrmatic can offer a fully weatherproofed unit. Weatherproof units attract an additional cost.

On matters of system sizing and plant location it is strongly recommended to consult with our in-house design team prior to product selection and installation. A free design service is available to customers.

Efficiencies
Fuel usage and emissions are a key consideration within the TE heater operating principles and design. All heaters have efficiencies which meet or exceed the requirements of current Building Regulations with additional output options available.

Efficiencies can be further enhanced with the selection of high/low or modulating burner options.

Cabinet
The heater is supplied in modular format for on site assembly. Each section is of frame and panel construction and finished with hardwearing epoxy powder coat stove baked paint.

Combustion Chamber
The drum type chamber is fabricated from high grade T304 stainless steel close coupled to a high efficiency tubular heat exchanger. Both elements have been life-cycle tested and consequently covered by an extensive twenty year warranty.

Controls
Heaters are supplied ready for automatic operation and are complete with safety and comfort controls. As standard heaters will be provided with high temperature limit protection as well as an optimised entry code protected control which includes a digital time switch, electronic day thermostat and frost protection thermostats with the temperature sensor located in the fan compartment which will constantly monitor the return air temperature. This will operate the burner high/low or modulation maintaining the space temperature which in turn will lower operating costs and provide the close temperature control within the space.

The control console is heater mounted for all internal units and supplied in remote format for external heater variants. In the case of external the interconnecting wiring between the heater and control console is by others.

Air Movement
Via dynamically balanced axial fan sets with direct drive motors.

Burners
Powrmatic TE heaters are specification matched to Riello pressure jet oil and forced draught gas burners. Oil fired heaters are arranged, as standard, for operation on Class D light distillate 35 second gas oil whilst gas fired heaters are supplied ready for use with natural gas (G20).

Alternative kerosene, LPG propane (G31) or liquid biofuel firing available to order.

Approvals
All Powrmatic heaters are type tested to meet the stringent requirements of both the Gas Directive and are CE Approved.
Notes –

- Fuel consumption and output figures based upon gross calorific values as follows:
 - Class D light distillate fuel oil nett CV 36.28 MJ/l
 - Natural gas (G20) nett CV 34.02 MJ/m³
 - Propane (G31) nett CV 88.00 MJ/m³
- Overall heater height includes extension module
- Alternative height extension modules can be specified to suit site conditions
- The above weights are for standard heater and standard extension module only.
- Data and dimensions refer to standard internal models - for external models contact our sales office
- Fan motor sizes and electrical consumption levels will vary according to the specification of the heater. Actual rates will be confirmed at the time of quotation, alternatively contact the sales office for further information.
- Installer guidance notes on rear page

<table>
<thead>
<tr>
<th>Duties</th>
<th>Powrmaster - TEG / TEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>21</td>
</tr>
<tr>
<td>Nominal Output kW</td>
<td>88</td>
</tr>
<tr>
<td>Air Volume m³/s</td>
<td>Dependant upon design criteria of system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electric</th>
<th>Supply V/Ph/Hz</th>
<th>230/1/50</th>
<th>400/3/50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor kW</td>
<td>Dependant upon design criteria of system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start amp</td>
<td>Dependant upon design criteria of system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Run amp</td>
<td>Dependant upon design criteria of system</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Burner Options</th>
<th>Gas (Standard)</th>
<th>Riello RS40GS10P</th>
<th>Riello RS40GS20P / GAS3GBP</th>
<th>Riello RS50/70</th>
<th>Riello RS70/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Low Gas (Optional)</td>
<td>Riello RS40GS10D</td>
<td>Riello RS40GS20D / RS34M2Z</td>
<td>std</td>
<td>std</td>
<td></td>
</tr>
<tr>
<td>Modulating Gas (Optional)</td>
<td>Riello RS40GS10M</td>
<td>Riello RS34MZ / RS50M</td>
<td>Riello RS34MZ / RS50M</td>
<td>Riello RS70M / 100M</td>
<td></td>
</tr>
<tr>
<td>Oil (Standard)</td>
<td>Riello R40G10</td>
<td>Riello R40G20S / PRESS GBV</td>
<td>Riello RL34/50</td>
<td>Riello RL70/100</td>
<td></td>
</tr>
<tr>
<td>High Low Oil (Optional)</td>
<td>Riello R40G10I</td>
<td>Riello R40G20D / RL34</td>
<td>std</td>
<td>std</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Connection Oil BSP/Rc</th>
<th>¼"</th>
<th>¼"</th>
<th>¼"</th>
<th>¼"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas BSP/Rc</td>
<td>¼"</td>
<td>1¼"</td>
<td>1½"</td>
<td>2"</td>
<td></td>
</tr>
<tr>
<td>Minimum Inlet Pressure Nat Gas mbar</td>
<td>17.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPG mbar</td>
<td>37.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption Standard Outputs Oil l/h</td>
<td>10.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nat Gas m³/h</td>
<td>Dependant upon design criteria of system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPG m³/h</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overall Dimensions</th>
<th>UF Upright Freeblowing</th>
<th>Height mm</th>
<th>5162</th>
<th>5225</th>
<th>6048</th>
<th>8045</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width mm</td>
<td>1010</td>
<td>1162</td>
<td>1518</td>
<td>2026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth mm</td>
<td>1568</td>
<td>2025</td>
<td>2991</td>
<td>4007</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Installation Clearances</th>
<th>UF Upright Freeblowing</th>
<th>Front mm</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side mm</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear mm</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flue Diameter mm ø</td>
<td>150</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Combustion Air Spigot mm ø</td>
<td>150</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Noise Level dBA</td>
<td>Dependant upon design criteria of system</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dimensions

![Diagram of Air Outlet Module, Extension Module, Heat Exchanger Module, and Fan Module with Front View, R. H. Side View, and Rear View.]

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H Gas</th>
<th>H Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>TE 21</td>
<td>1010</td>
<td>1568</td>
<td>1873 in Total</td>
<td>1873</td>
<td>1416</td>
<td>150</td>
<td>346</td>
<td>346</td>
<td></td>
</tr>
<tr>
<td>TE 31</td>
<td>1162</td>
<td>2025</td>
<td>1213</td>
<td>1574</td>
<td>1778</td>
<td>660</td>
<td>200</td>
<td>580</td>
<td>468</td>
</tr>
<tr>
<td>TE 41</td>
<td>1518</td>
<td>2991</td>
<td>1215</td>
<td>1975</td>
<td>1897</td>
<td>960</td>
<td>300</td>
<td>580</td>
<td>468</td>
</tr>
<tr>
<td>TE 61</td>
<td>2026</td>
<td>4007</td>
<td>1769</td>
<td>2355</td>
<td>2152</td>
<td>1769</td>
<td>350</td>
<td>840</td>
<td>680</td>
</tr>
</tbody>
</table>
General

The following note are provided as a guide, however installers and operators should fully acquaint themselves with the more detailed guidance provided in the relevant installation manual. For copies of such manuals please consult our technical department or visit our website - www.powrmatic.co.uk

Standards

All Powrmatic TE heaters must be installed, commissioned and operated with due regard to appropriate regulations including but not limited to BS 6230, BS5410 1998, relevant Codes of Practice, the possible requirements of Local Authorities, Fire Officers and insurers as well as Powrmatic’s installation manual.

Position, Location & Assembly

Powrmatic TE heaters are specifically designed to operate on air rotation principles. Consequently the location of the heater(s) and any supplementary ‘fan-only’ units (if required) may have a direct impact on the achievement of required design criteria.

It is possible to install the heater(s) directly within the space to be heated, within a plant room area, an adjacent building or an external location. Weatherproofed external heaters will attract an additional cost.

The height at which the air is discharged within the building can, for some applications, be critical and the final outlet plenum section of the heater(s) and ‘fan-only’ units (if required) may need to be tailored to the application.

On all matters of heater(s) and ‘fan-only’ unit location it is strongly recommended to consult with our in-house design team prior to product selection and installation. A free design service is available to customers.

To aid installation the heater(s) is supplied in modular format. Consideration should however be given to the means of moving the component parts within the site and necessary mechanical handling for assembly. Each heater will be delivered in sections and will require on site lifting. Please contact Powrmatic for further advice.

Heaters should be installed on a level non-combustible base. It is important that all supporting structures have due regard to the relevant weight loadings.

Consideration should also be given to flue routes, gas, oil, electrical and control connections, issues of public access and the siting of environmental control stations and/or remote temperature sensors where the position needs to be representative of the zone temperature to which they refer.

If the heater is to be located in a plant room, an adjacent building or externally then consideration of delivery and return air ductwork will be necessary.

Heaters should not be installed in hazardous areas or areas where there is a foreseeable risk of flammable or corrosion inducing particles, gases or vapours being drawn into the combustion air or main fan circuits. Areas where special consideration or advice may be required could include but is not limited to:

- Areas where de-greasing solvents are present, even in minute concentrations
- Where paint spraying is carried out
- Where styrenes or other laminating products are used
- Where airborne silicone is present
- Where petrol engined vehicles are stored or maintained
- Where dust is present (i.e. wood working or joinery shops)
- Where high levels of extract persist

Installation in such areas may be possible under specific conditions. Please consult our technical department for further information.

Plant Room Locations

Specific requirements exist where heaters are to be installed within plant rooms. Such requirements cover the provision of positive ductwork connections as well as ventilation for combustion air and general plant room or enclosure ventilation. It is recommended that you consult with our technical department prior to installation.

Combustion Air & General Ventilation

Within the United Kingdom mandatory regulations apply concerning the provision of combustion air and general heater ventilation. Where a heater is installed within the heated space and where that heated space has a natural ventilation rate greater than 0.5 air changes per hour then combustion air and general heater ventilation is probably not required.

If the heated space has a natural ventilation rate of less than 0.5 air changes per hour or if the heater is plant room located then different criteria apply. Please consult the installation manual for further details.

Installation Clearances

Particular clearances may be necessary for the correct and safe function of the heater as well as for maintenance purposes. Such clearances are confirmed in the relevant installation manual.

Flue

Each heater requires a separate flue system of the appropriate size. The flue should essentially be installed in the vertical plane and the number of bends kept to a minimum

The flue must be adequately supported and terminated with a suitable cowl, with due regard to the point of exit and it’s proximity to any windows, doors or ventilation intakes etc.

Pipework

Care should be taken when sizing pipework to ensure that minimum gas and maximum oil inlet pressures are not compromised under dynamic load conditions. Isolating valves and service unions should be provided for each heater and pipework installed with due regard for relevant standards and Codes of Practice.

Guarantee

Powrmatic TE heaters are provided with a comprehensive guarantee covering both the heater and the heat exchanger. For United Kingdom sales the heater has the benefit of a two year parts and twelve month labour guarantee whilst the heat exchanger assembly has a five year guarantee with a further fifteen year sliding scale time related warranty. All guarantees are subject to terms and conditions.

Powrmatic Ltd
Hort Bridge
Ilminster
Somerset
TA19 9PS

tel: +44 (0) 1460 53535
fax: +44 (0) 1460 52341
e-mail: info@powrmatic.co.uk
web: www.powrmatic.co.uk

Powrmatic Ireland
45 Broomhill Close
Tallaght
Dublin 24

tel: +353 (0) 1452 1533
fax: +353 (0) 1452 1764
e-mail: info@powrmatic.ie
web: www.powrmatic.ie

Powrmatic pursues a policy of continuous improvement in both design and performance of its products and therefore reserves the right to change, amend or vary specifications without notice. Whilst the details contained herein are believed to be correct they do not form the basis of any contract and interested parties should contact the Company to confirm whether any material alterations have been made since publication of this brochure.

Issue 5.1 September 2014